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A solution of the Boltzmann equation is obtained at the upstream and down- 
stream singular points in a shock wave, for the case of Maxwell molecules. The 
fluid velocity u, rather than the spatial co-ordinate x, is used as the independent 
variable, and an equation for af/au a t  a singular point is obtained from the Boltz- 
mann equation by taking the appropriate limit. This equation is solved by using 
the methods of Grad and of Wang Chang & Uhlenbeck; and it is observed that 
the two methods are the same, since they involve not only an equivalent system of 
moment equations but also the same closure relations. Because many quantities 
are zero a t  a singular point, the problem becomes sufficiently simple to allow the 
solution to be carried out to any desired order. At the supersonic singular point, 
the solution converges very slowly for strong shock waves; but a simple modi- 
fication to Grad’s method provides a rapidly convergent solution. The solution 
shows that the Navier-Stokes relations, or the first-order Chapman-Enskog 
results, do not apply unless the shock-wave Mach number is unity, and that they 
are grossly in error for strong shock waves. The solution confirms the existence 
of temperature overshoot in a strong shock wave; shows that the critical Mach 
number in Grad’s solution increases monotonically with the order of the 
solution; provides a simple explanation as to why Grad’s closure relations fail 
and shows how they can be improved; and provides exact boundary values that 
can be used to guide future numerical solutions of the Boltzmann equation for 
shock-wave structure. 

1. Introduction 
One sometimes encounters problems that prove to be of value more because 

they are instructive than because they are the occasion of a particular solution. 
We propose to show that several basic questions in kinetic theory, which are 
related to the solution of the Boltzmann equation, can be clarified by a study 
of the problem dealing with the flow in the upstream and downstream wings 
of a shock wave. These regions are well suited for study, because a perturbation 
scheme can be employed to solve the Boltzmann equation; many troublesome 
terms drop out of the analysis, so that a solution can be obtained with a degree 
of completeness rarely found among other problems; a number of very interesting 
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nonlinear properties of the flow field are retained, even though a perturbation 
scheme is used; and many of the results are new, and at  variance with certain 
notions developed on the basis of the first-order Chapman-Enskog solution and 
the corresponding phenomenological laws. 

The basic interest in the present problem is founded upon several important 
facts: the solution can be obtained by using either Grad’s (1949) method, or 
that of Wang Chang & Uhlenbeck (1952); one observes that the two methods 
involve not only an equivalent system of moment equations, but also the same 
closure relations; the solution can be carried out to surprisingly high orders and 
converges at  the subsonic singular point, but because of temperature overshoot 
in strong shock waves it must be carried out to fifth or sixth order; convergence 
a t  the supersonic singular point is extremely slow for strong shock waves, but a 
simple modification provides a rapidly convergent solution. 

Many of the steps that lead to the formulation of the problem have been em- 
ployed by others in related work. The central notion is to consider the fluid 
velocity u, rather than the spatial variable x, as the independent variable in 
studying a shock-wave profile. This substitution was used by von Mises (1950) 
and by Gilbarg & Paolucci (1  953), when they showed that a very natural approach 
in solving the Navier-Stokes equations for shock-wave structure is to solve first 
for the solution curve in the temperature-velocity (T,u)  plane, then use the 
relation T = T(u) to integrate one of the conservation equations in order to 
determine the profile in the spatial variabIe x. In the temperature-velocity plane, 
the solution curve terminates on the points (T‘,u,) and (Tz,uz), as shown in 
figure 1. The point z1 is determined by the upstream conditions; and the point 
zz is determined by the Rankine-Hugoniot conditions. They are therefore 
fixed by the physical problem; but the solution curve connecting the two points 
is characteristic of the equation, or set of equations, being solved. For the 
Navier-Stokes equations,vonMises ( 1950) and Gilbarg & Paolucci (1953) showed 
that x1 and zz are singular: x1 is an unstable node, and z2 is a saddle point. Por 
the Boltzmann equation, the points are again singular; but the character of the 
two singularities is difficult to establish. As can be seen from figure 1, the 
singular points are natural points about which to obtain a perturbation solution 
(i.e. we are interested in the direction of the tangent to the solution curve at  
either end point, for each dependent variable). 

For the shock-wave problem, the flow is steady and one-dimensional and 
(in terms of the independent variable u) the Boltzmann equation can be written 

where f = f ( c ,  u),  c is the laboratory velocity, p is the mass density, and G(pf) 
represents the collision integral. Nordsieck & Hicks (1967) first noticed that 
(1) is useful for numerical computation; they also first used number density 
as an independent variable in their numerical work. Hicks, Yen & Reilly (19’12) 
and Yen et al. (1974) used (1) to obtain a numerical solution of the Boltzmann 
equation for shock-wave structure. It is clear that the term on the right-hand 
side of (1) is indeterminate at  x1 and zz, since both C(pf) and duldx are zero 
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FIGURE 1. Schematic diagram of a, typical solution curve in the T,u plane for a shock 
wave; z1 and z2 are the upstream and downstream singular points, respectively. 

at  those points. Thus an analytic solution near the singular points would also be 
very useful in guiding future numerical solutions of the Boltzmann equation 
for shock-wave structure, since it is clear that most numerical error develops near 
the singular points. 

Since we shall be interested in central moments off, it  is convenient to recast 
(1)  in terms of the thermal velocity C. This transformation is given by Chapman 
& Cowling (1964); and for steady one-dimensional flow it yields 

where now f = f ( C ,  u). 

2. Equation of transfer evaluated at a singular point 
A standard approach in the solution of the Boltzmann equation is to form the 

equation of transfer for an arbitrary function 9 of the thermal velocity (Chap- 
man & Cowling 1964). Since we are interested in the solution near the singular 
points, the equation of transfer must be evaluated at  those points, and this 
operation yields 

for s = 1 or s = 2. Here 

is a general moment off, and the operator A[#]s is defined by 
(6) = s9.f dC ( 4) 
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The integral in the numerator of (5) has been worked out for only a limited number 
of 4’s and for the case of Maxwell molecules (Grad 1949; Ikenberry & Truesdell 
1956; Rode & Tanenbaum 1967). To develop a high-order set of moment equa- 
tions from the equation of transfer, one would have to work out this integral 
for many additional 4’s. This is not only a difficult procedure, but also a great 
waste of effort, since many terms vanish when the limit in (5) is taken. 

The wasted effort can be avoided if one uses L’Hospital’s rule in taking this 
limit. Since the xx-component r of the viscous stress tensor is zero a t  s, the limit 
value can be computed as 

This seemingly artificial manipulation serves two purposes. (i) It allows the 
introduction of the important stress ratio ( T / T O ) ~ ,  where 

is the Navier-Stokes expression for r while ,u is the coefficient of viscosity. 
(ii) On recognizing 

where J is the familiar linearized collision operator discussed by e.g. Uhlenbeck 
& Ford (1963)) and where f ( O )  is the Maxwellian distribution, we can replace t,he 
nonlinear operator C by the linear operator J ,  and write 

The quantity w, is defined by 

w = - (r/r”,, 
- 9A, 

where p is the pressure, and A, is the constant defined by Wang Chang & Uhlen- 
beck (1952, p. 17). (There should be a factor of 2n preceding their integral that 
defines Azk.) The numerical value of A, is 2.7406.t I n  writing (8)) we have re- 
stricted ourselves to the case of Maxwell molecules. For the general case w, is 
only slightly more complicated; but then ( 7 )  becomes much more difficult to 
evaluate. With the introduction of (7) we have eliminated terms that vanish a t  
s, and thus avoided much wasted effort; but the remaining terms, nevertheless, 
require considerable calculation. Although these calculations are straightforward, 
we shall postpone the discussion of the method by which they can be carried out 
to 3 4, where the required mathematical preparation is found. 

The introduction of the equation of transfer (3)) together with simplification 
(7),  allows one to construct directly the set of moment equations that contain the 

t It is unfortunate that various authors have defined A,  in slightly different ways. The 
A,  defined by Wang Chang & Uhlenbeck (1952) is twice the A ,  defined by Maxwell (1890), 
and a factor of 27r times the A,  defined by Chapman & Cowling (1964). 
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gasdynamic variables. These equations, as we shall see, are important in dis- 
covering the scaling rules that give bounded quantities for all shock-wave Mach 
numbers. In  addition, we shall want to refer to this set of equations when we dis- 
cuss Grad’s method of solution. The disadvantage in using (3) to construct a set 
of moment equations is that the entire reduction must be redone each time a 
different q5 is chosen. Since we are interested in eventually constructing a large 
set, we shall rely upon (3) for physical insight; but we shall seek a more efficient 
method for actually constructing a large set of moment equations. I n  the process, 
the complete similarity between the methods of Grad (1949) and of Wang Chang 
8: Uhlenbeck (1952) will become evident. 

3. The Wang Chang equations at a singular point 
The key step in the formulation of a more efficient method is to reverse the 

order of the steps takenin Q 2 (i.e. to take the singular point limit of the Boltzmann 
equation ( 2 )  before moments are formed). The limit process can be applied first 
if we assume from the outset that pf can be expanded in a Taylor series about each 
singular point in the form 

pf =psf$?[l +&Au,+ ...I, (9) 

where Au, = (u-us). The hat symbol is used to draw attention to  the fact that 
L involves a derivative with respect to u, since 

As a consequence of (4) we also have 

which relates a general moment off(:),$, to the f i s t  derivative of the same moment 
off. (Equation (11) yields the relations for the gasdynamic variables when q5 
is replaced by 1, C2, C,Cz, etc.) Substituting (9) into (a), and evaluating the equa- 
tion a t  s, we obtain the fundamental equation €or is given by 

(@,+TQ (B-;u,i,+ 2v,) = wsJ(u,As), 

w s J ( u s i s ) - L ( u s ~ s )  = 2Q(Bs+v,); (13) 

(12) 

where BS = us(2RTs)-h and V = C(2RTS)d is a dimensionless thermal velocity 
(note the suppression of s on V). For convenience we write (12) in the form 

and we note that J and L are linear operators. 
It can be seen from (8) that w, is inversely proportional to (&/du),; and it will 

be seen below that the stress ratio (7/7O), can be expressed as a linear function of 
another moment off (:)is. Therefore, (13) is a nonlinear integral equation for is. 
Because of the presence of w,, moment equations formed from (13) will generally 
involve nonlinear algebraic relations among the different moments (more pre- 
cisely, first derivatives of moments); and this makes it necessary to employ a 
computer solution in the final analysis. However, the interesting physical aspects 
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of the problem arise because of the nonlinearity; so the need for a computer 
solution is not viewed as undesirable. 

Now, for Maxwell molecules, the eigenfunctions and eigenvalues of the opera- 
tor J are known (Wang Chang & Uhlenbeck 1952; Waldmann 1958); and the 
eigenvalues have been exhaustively tabulated by Alterman, Frankowski & 
Pekeris (1962). The solution of (13) is in principle straightforward, if we follow 
the method of Wang Chang & Uhlenbeck (1952). Restricting the notation to the 
case of one-dimensional flow, we first expand us & in terms of the eigenfunctionst 
of J :  

where the &'s are coefficients to be determined (note the suppression of s on 
Q1). In fact it can be seen from (11) that t,he &'s are simply derivatives of the 
eigenfunction moments off, evaluated at s: 

u s i s  = nrQ z Ert$rl, (14) 
r ,  1 

If we now substitute (14) into (13)' multiply by $rr7'1'e-vB and integrate, we obtain 
the infinite system of equations 

E [i@s(as Art- 1) a r l , r , r - ~ r i , r , r ~  Cr*r = brt, 

~ 1 ,  r'l' /% e-v2 $rl $rrr dv, 

(16) 
r' ,  1' 

where 

brl = 2 ~ - 8 i @ ~  K(gs  + V,) e-V2 11;1dV, 

and where A, is the eigenvalue corresponding to $rl. An explicit formula for 
was worked out by Wang Chang & Uhlenbeck (1952), and their result can 

be used here. Only four elements of the column vector b, are non-zero; they are 

boo = g, b,, = J2 i@i, b,, = - 2@/JS and bog = 2@JJ3. 

Equation (16) is an infinite set of equations in the eigenfunction moments 
gr1; and it isvirtually identical to Wang Chang & Uhlenbeck's equation (25). The 
identity includes the method of solution of the truncated set, in that the value of 
ws is determined by the requirement that a certain determinant in (16) vanish. 
To a given order, this set contains precisely the same information as the set 
obtained from the equation of transfer (3). The advantage in using (16) is that 
only the matrix elementsN,.l,r,r have to be computed, and this step is trivial. Thus, 
the set can be easily written down to any order in a purely mechanical fashion, 
whereas use of (3) requires that each moment equation be worked out individually. 
However, the disadvantage in using (14) is that the eigenfunction moments them- 
selves cannot be interpreted as physical quantities, and this makes it difficult 
to anticipate how they should be scaled so that they are bounded for all shock- 

? Here we shall deal with the eigenfunctions and eigenvalues defined by Wang Chang 
& Uhlenbeck (1952). The @vr defined by Waldmann (1958) is equal to n8 times the $tr of 
Wang Chang & Uhlenbeck (1952) : and his definition of A,  corresponds to that of Chapman 
& Cowling (1964). 

s 
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wave Mach numbers. The transformation relating the &‘s to  the gasdynamic 
variables can be obtained by using (15), and noting from the definition of $rl 

that the ($J’s can be expressed as linear combinations of the gasdynamic 
variables. Before these relations can be exhibited, we must first define the 
symbols to  be used for the higher moments (beyond the gasdynamic variables) ; 
this will be done in $4. 

4. Mathematical details 
In  defining symbols for the higher moments, we shall follow Grad’s notation 

in the use of subscripts, but restrict it  to the case of one-dimensional flow, with 
the subscript 1 corresponding to the x direction. We now list the independent 
moments of order five or less in a one-dimensional flow: the third-order moments 
are 

the fourth-order moments are 
s, = p(CzC2) = 2q, x,,, = p(Ci) ;  (17) 

Q p(c4 ) ,  Q11 p(C;C2), Q1Ill P ( C ~ ) ;  (18) 

R1 p(cZC4), R,,, p(C:C2), Rn,,, P(CZ). (19) 

and the fifth-order moments are 

Although both S, and S1,, are zero a t  s, the ratio (~lll/81)s is not zero. The im- 
portance of the ratio SIll/S, was first noticed by Baganoff & Nathenson (1970), 
who reasoned that, in a shock wave, the ratio should lie in the range 

0 < S,,JX, < 1. (20) 
Therefore, this ratio is a very useful quantity for determining the point a t  which 
a solution becomes physically meaningless and fails. For this reason, we shall 
want to use it as one of the primary unknowns in the moment equations. This 
change of variables will be accomplished by means of the substitution 

which is obtained by application of L’Hospital’s rule. It should also be noted that 
for Grad’s thirteen-moment solution and for the first-order Chapman-Enskog 
solution the ratio S1,,/S, has the constant value g .  

The foregoing discussion suggests that it may also be useful to consider 
similar ratios among the fifth-order moments defined by (19), i.e. to write 

These three ratios will be of interest in a subsequent discussion of closure rela- 
tions in $ 7. 

F L M  65 39 
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We are now in a position to list several of the transformations defined by (15). 
I n  anticipation of what we learn by inspecting the moment equations expressed 
in terms of the gasdynamic variables, we shall scale the eigenfunction moments 

5 Mi5 go5 = - [ 63 ( N-2 - - - 70 M-2 - - 
72463  PU2 ( pu2 du 

Since $rl is a polynomial of degree (2r + I), we have grouped the &'s in ascending 
order and listed them within the group in ascending 1. The fifth-order group (29) 
was also included for later reference. It is of interest to note the rule that 

trl N 

It is appropriate a t  this point to return to (7),  to supply the result alluded to 
in the discussion following (8). Expanding q!J in terms of the $-rl's by 

upstream as the shock strength increases. 

q!J = n' C Prl$-rty ( 30) 

A[@], = ~s 0 s  X Pr1 Crr. (31) 

r, 1 

and using (30) together with (10) and (14) in ( 7 ) ,  we arrive at the result 

r, 1 

Since the &'s are known, (31), together with the transformations for the &'s, 
allows one to express the collision term in the equation of transfer (3) in terms of 
the gasdynamic variables. Here again we note that the equation of transfer does 
not provide an efficient route, since the Prl's must be worked out for each 4. 

We now exhibit a representative set of moment equations obtained from (3) and 
the final expression (31) for the collision term. With q5 = 1 and @ = C2, (3) yields, 
in turn, the familiar continuity and energy equations. (The momentum equa- 
tion cannot be obtained in this way, as it has been used in the derivation of (3).) 
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After using the continuity equation, we can write the momentum and energy 
equations as 

and (33) 

respectively. The first non-zero contribution from (31) arises when q5 = Cz and 
(3) yields 

2 (331) 4 8 p f - 2 i d P )  PdU s -+ +3M,-2 ="M-22-) 3 
S . (34) 

Here we have introduced the moment ratio (h'lll/~l)s by means of (21). Noting 
that (34) is an expression for   TO)^ and on using (8) and (21), we see that us is a 
rational function of two moments off $)&; this verifies the statement made follow- 
ing (13) regarding the nonlinearity of (13). With $ = C,C2 and $ = C:, equation 
(3) yields, in turn, 

and 

I n  the set (32)-(36), we have preserved the identity of the collision term in (3) 
by placing contributions from it on the right-hand sides of the equations. I n  
(35) and (36), we have used L'Hospital's rule to introduce the ratio 

The ratios (8111/81)s and (Tu/q), have been introduced for convenience alone; 
they do not add new unknowns to the system. 

The logic used in expressing (32)-(36) in terms of bounded quantities can 
be illustrated by considering (32) as ail example. For M, B 1, the critical situation 
is at the upstream singular point; and (32) gives 

Except for the pathological case where the difference grows like $!:, a t  least 
one of the two quantities must grow like M:. Therefore, all terms in (32 )  are 
expected to  be bounded. Similar arguments can be applied to the remaining 
equations by using condition (20) and identity (37). The motivation for scaling 
the eigenfunction moments in (27)-(29) as shown is now obvious; and it is easy 
to see how a purely formal treatment of the system of equations (16) could lead 
to computational difficulties for large values of Ml. 

39-2 
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5. Grad’s method of solution 
Grad (1949) developed a logically precise method for closing the set of moment 

equations obtained from (3) at any level of truncation. He expanded the dis- 
tribution function f in a Hermite-polynomial series of the form 

1 
f = f‘”’- ” v !  a,H,- (38) 

The orthogonality of the Hermite polynomials implies 

a,  = ( H Y ) Y  (39) 

so the a,’s are simply Hermite-polynomial moments off. To obtain the closure 
relations a t  order n, Grad simply sets a, = 0 in (39), with v = n + 1.  He then 
automatically obtains an expression for the highest-order monomial moment, 
which is a tensor of rank n + I ,  in terms of lower-order monomialmoments, which 
are also tensors of appropriate rank. Successive contraction of this expression 
yields exactly ciiough information to eliminate from the moment equations all 
the moments of order n+ I, which are the extra unknowns. For our problem, 
the closure relations will be differentiated with respect to u, evaluated a t  s, 
and expressed in terms of bounded variables. 

Closure a t  the seconcl-order level is physically unrealistic when one deals with 
(38), since the heat flux is identically zero in this case. Nevertheless, we shall list 
the two closure relations 

as we shall encounter the second-order solution in § 6 ,  outside the context of (38). 
The third-order closure relations are 

and 

while those of fourth order read 

(44) 

and 
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FIGURE 2. Variation of bounded stress ratio (&1-2~/70), with singular point Mach number 
M, in solution based on Grad’s closure relations: -, ninth-order solution ; ..-.-., solutions 
to  lower orders (8s indicated). 

The fifth-order relations were also obtained and used; but they are too lengthy 
to  present here. For completeness, we mention that the closure relations for the 
thirteen-moment equations are given by (%)s = 5’ 3 

(47) 

in addition to (42). 
Momentarily turning our attention back to the Wang Chang system (16), 

we observe that, a t  any order of truncation n, the closure method used by Wang 
Chang & Uhlenbeck (1952), which consists of setting trt = 0 for 2 r + l =  n+ 1, 
yields exactly the same closure relations as obtained by Grad. This can be 
seen, for example, by comparing the relations obtained from (29) with Grad’s 
fourth-order set (44)-(46). This correspondence holds true at every order; 
indeed, it is to be expected, as indicated by Grad (1958). Also, since it is 
easy to show that (16) consists of linear combinations of the moment equa- 
tions obtained from (3), we shall henceforth make no distinction between the 
two methods in discussing the final results, and shall refer simply t o  Grad’s 
method. 

Using the appropriate closure relations, we have solved the nonlinear system 
of equations on a digital computer for various orders, beginning a t  the thirteen- 
moment level. Figure 2 gives the results of the calculation to ninth order for the 
bounded stress ratio ( M - 2 7 / ~ ~ ) , ,  where the local Mach number M, is employed as 
the independent variable. Two points appear on the graph for each shock-wave 



614 J. P. Elliott and D. Bugunofl 

0 0.5 1 .o 1 *5 2.0 2.5 3.0 3.5 
llf8 

FIGURE 3. Variation of moment ratio ( ~ l l l / & ' ~ ) s  with singular point Mach number .iMS in 
solution based on Grad's closure relations : __- , ninth-order solution; .**..., solutions to 
lower orders (as indicated). 

Mach number, one corresponding to the upstream singular point ( s  = 1) and 
the other corresponding to the downstream singular point (s = 2 ) .  A typical 
pair for the ninth-order solution is given by the points marked A and B in 
the figure. The point lWs = 1 divides the two branches of each curve. (Several 
of the solutions are not shown for n/l, < 1 for aesthetic reasons; the same practice 
will be followed in subsequent figures for cases where the curves are either too 
crowded or overlap.) All the calculations were terminated upstream or down- 
stream whenever ( T / T O ) ~  = 0, because the solutions become physically meaning- 
less beyond these points. That this is so can be seen from two points of view. 
(i) Since 7 6 0 in a shock wave, we must always have 7 / 7 O  2 0 in order that u 
decrease monotonically through the shock wave. (ii) It is clear from (7)  that 
contributions to the moment equations from the collision integral are propor- 
tional to ( T / T O ) ~ .  It is therefore inconceivable that (./TO),, could be zero, unless 
( d ~ l d u ) ,  were zero as well. Interestingly enough, for strong shock waves, this is 
exactly what happens downstream in the solutions beyond third order, i.e. both 
( 7 / 7 0 ) ,  and (d.r/du), undergo sign reversals a t  exactly the same value of M, (e.g. 
M, g 0.5 in the fourth-order case, and JI, g 0.47 in the fifth-order case). For 
values of M, below such values, we still rule out the validity of these solutions on 
the grounds of our first argument. 

The existence of a critical Mach number (MI g 1.65) for the thirteen-moment 
solution was first noticed by Grad (1952). The failure of the thirteen-moment 
equations to yield shock structure for Ml > 1.65 is due precisely to this situation 
a t  the upstream singular point. 

Figure 3 presents the corresponding results for the moment ratio (Slll/231)s. It 
can be seen that the curves intersect the upper bound a t  unity [see (20)] a t  
the same values of MI for which ( T / T O ) ~  = 0 in figure 2 .  This further substantiates 
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the above allegation that the solution is not valid beyond the point at which 
( T / T O ) ~  = 0. Downstream, condition (20) is satisfied for all values ofM, to all orders 
beyond the third. 

Figures 2 and 3 clearly show that the upstream solution converges at a pain- 
fully slow rate. Even with the solution to ninth order, the best one can say is 
that the upstream results are useful only for Ml considerably less than 2. The 
present problem is therefore extremely valuable, in that it provides a classic 
example of a situation in which one cannot significantly improve a solution by 
adding a few more terms to a series. The problem also shows that the critical 
Mach number increases monotonically with increasing order. This result con- 
tradicts the assertion made by Holway (1964) that a critical Mach number is 
found, M ,  = 1.851, above which solutions based on Grad’s method do not 
exist no matter how many terms are retained in (38). Physically, the origin 
of the slow convergence is obvious. The molecular-beam nature of the up- 
stream flow and the bimodal character o f f  prohibit one from adequately 
representing f in a shock wave without retaining an unreasonable number of 
terms in (38). 

6. Rapidly convergent solution 
Recognizing that f is a very difficult function to fit, we see that the task could 

be considerably simplified if we were to use physical knowledge concerning the 
problem to  construct the first term and let the remainder of the series correct the 
error. (This point of view was expressed by Holway 1965.) If we are successful 
in picking a suitable function, then the error will be small, in some sense, and the 
series will converge more rapidly than Grad’s. Thus, we would obtain more rapid 
convergence if our choice were good; if not, the error term would also be difficult 
to fit, and the series would converge as slowly as before. Therefore, there is no 
guarantee of success, but a t  least it is worth a try. 

Since the Mot,t-Smith distribution has received considerable study, and has 
been found generally to be a fairly good approximation to the actual case, we 
shall use it as our first term; we write 

where the error term f E  will be represented by the Hermite-polynomial series 
(38). This approach allows us to use exactly the same steps used by Grad, except 
that our closure relations will be different, because we use (38) t o  represent f E  
instead off. 

If we define (+IMs and (q5)E in accordance with (4) and the respective distribu- 
tion functions fnls and f E ,  we see from (48) that 

Therefore, to obtain the closure relations based on (48), we merely have to replace 
every derivative d</du in (40)-(46) by the difference (dc/du) - (dcJfs/du), where 
< = T, T ,  q,  Sill, etc. This is t o  be done on both sides of the equations. To carry 



616 

3.0 

2.5 

2.0 

m 

c - c 1.5 

3. 
1 .o 

0.5 

J .  P. Elliott and D. Baganoff 

I i  I I I I I 

!,Order 3 
... 
j :i j i i  
: :: : :: 

j :: 
; l4 

FIGURE 4. Variation of bounded stress ratio 7/7°)s with singular point Mach number 
JIS in present solution: -- , fifth-order solution; . ' . . . a ,  solutions to lower orders (as 
indicated). 

out this procedure, the expressions for the various d c M s / d u  must be worked out. 
A list of some of the lower-order results follows: 

(50 )  

Since {l)aIs = 1 and {CJMS = 0, the series for f E  actually commences with 
the term involving H,. I n  other words, the error term does not contribute either 
to the normalization off, or to the fluid velocity u. (The fluid velocity is a free 
parameter in the Mott-Smith distribution function.) 

Using the new closure relations together with the moment equations up to 
fifth order, one obtains the results shown in figures 4 and 5. The solution was 
termined a t  fifth order, because the new closure relations become quite compli- 
cated as the order increases. We see that the solution satisfies the conditions 
( ~ I 5 - 0 ) ~  3 0 and 0 < (AYlll/AYl)s < 1 for all orders and for all shock-wave Mach 
numbers. Downstream ( T / T O ) ~  = 0 for M 2  E 0.55 in the fourth-order solution and 
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FIGURE 5 .  Variation of moment ratio (h'lll/h'l)8 with singular point Mach number M ,  in 
present solution : -- , fifth-order solution ; ......, solutions t o  lower orders (as indicated). 

for M, 0.49 in the fifth-order solution. As was the case previously, (dr/du)2 
also reverses sign at these values of M,. I n  fact, downstream, there is very little 
to choose between the present fourth- and fifth-order solutions and those based 
on Grad's closure relations. Upstream, the present solution exhibits dramatic 
improvement over the previous solution; although convergence cannot be proved 
with the data a t  hand, the consistency of the results at  various orders leads one to 
believe that the exact solution is within reach. 

The moment ratio X,,,/S, was discussed within the context of the Mott-Smith 
solution by Nathenson & Baganoff (1973), who showed that, in the interior of a 
shock wave, good agreement exists between the Mott-Smith solution and the 
numerical solution of Hicks et al. (1972). Since the Mott-Smith solution corre- 
sponds to  the second-order solution in figure 5, one can view this agreement as 
tending to support the present results, at least upstream. A direct comparison 
with the present work cannot be made because singular point values are pre- 
sented in figure 5, whereas the numerical calculations of Hicks et al. (1972) are 
limited to the interior of a shock wave. 

We conclude from figures 4 and 5 that the present upstream solution to fifth 
order has converged to the point where it adequately represents the upstream 
flow. Since Grad's ninth-order downstream solution has essentially converged, 
we shall use it to represent the downstream flow. Therefore, we shall use this 
combination of results in all subsequent figures, and shall refer to  it simply as the 
composite solution. 

7. Results and discussion 
Figures 6 and 7 present summary plots of several quantities that reveal im- 

portant conclusions about the physical flow near the singular points. The 
crossing of the axis by the three curves a t  point A in figure 6 is an artifact of 
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M, in composite solution: -- , (Al-Z(u/p) d7/du),; - - - , ( 7 P L / q ) , ;  - - - - , ( J 4 - 2 7 / 7 0 ) , ;  

FIGURE 6. Variation of three stress-related quantities with singular point Mach number 

---.-, (M-27/70)8 for Navier-Stokes relation. 

the solution. We have observed that the position of the crossing varies as the 
order of the solution is increased (see figure 2); and it is clear from this trend that 
it approaches the limiting point M, = 1/45 as the order of the solution becomes 
infinite. Therefore, our discussion will be based on the conclusion that all three 
of the quantities shown are zero a t  M, = I/ J5 (point B). For the quantities shown, 
this conclusion is somewhat unexpected. For example, the figure shows that the 
function 7 = 7(u) has a zero slope at  the downstream singular point for MI = 00. 

The Navier-Stokes solution, by contrast, yields a non-zero slope for the same 
conditions. However, both solutions predict 

The ratio ru/q is of interest, as discussed by Nathenson & Baganoff (1973), be- 
cause it has the constant value g for the Mott-Smith distribution; it takes on the 
value # in a very weak shock wave, as confirmed by figure 6 ;  and it takes on the 
constant value unity if one assumes total enthalpy is conserved in a shock wave. 
The fact that (ru/q)2 is zero at B shows that the heat-flux solution curve q = q(u) 
does not have a zero slope a t  the downstream singular point, for MI = 00 [see 
(37)l-  

The stress ratio 7/70 is the most interesting quantity in figure 6. It is evident 
that  a large difference exist,s between the Navier-Stokes relation 7 = TO (the 
dotted line) and the result obtained from the solution of the Boltzmann equation. 
Approximate agreement exists only for MI 5 1.5. We find from the figure that, 
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for a strong shock wave, 7 N M;7O a t  the upstream singular point, while r < 7 O  

a t  the downstream singular point. This is in complete contrast to the Navier- 
Stokes prediction, and is contrary to the usual assumption made by many in 
formulating boundary conditions a t  either end of a shock wave. This result 
teaches us that the Chapman-Enskog procedure does not apply in the wings of a 
shock wave, regardless of how far upstream or downstream the point is chosenand 
how small the perturbation becomes. The basic reason for this is that, on setting 
f = f ( 0 )  + Af in the Chapman-Enskog procedure, one assumes that the dominant 
term on the left-hand side of the Boltzmann equation comes from the spatial 
and temporal variation of f ( 0 )  and the term containing Af is ignored. I n  this prob- 
lem we see that just the opposite is true [see (12)] ; the full contribution comes 
from 4f and none comes from f (0) .  This is the basic and sole reason for the differ- 
ence; it has nothing to do with the size of the perturbation. We feel that this is 
one of the important points the present problem has clarified. Therefore, one 
should no longer allude to physical a,rguments and use 7 = 7 0  as a limiting con- 
dition in a shock wave, as has been done in the past. Examples of where this 
assumption has been used can be found in Liepmann et al. (1962) and Hicks 
& Yen (1967)) among others. Narasimha (1968) was one of the first to  notice the 
error, when he analysed the case of a very weak shock wave and arrived a t  the 
conclusion that the Navier-Stokes relations are violated throughout the flow. 

Once the derivative with respect to velocity of each of the variables is calcu- 
lated at the singular points, one can determine the spatial variation of the same 
variable in the wings of the shock wave in the following manner. For a particular 
shock Mach number, we can use figure 6 to read the constants 

Now, in the immediate vicinity of a singular point in the 7,u plane, the above 
two relations allow us to write 

7 = (M2a),70 and 7 = (L%zpp/~)~ (ZL  - us), 

where we limit (u-u,I/u, to some small value e. Using definition (6) for 7 O ,  we 
then obtain the differential equation 

where definition (8) for w, was used. Equation (54) shows that the velocity profile 
in the wings of a shock wave is an exponential function with a length scale 

A physical interpretation of& can be given by writing (55) in terms of the mean 
free path length As. Using the expression for viscosity in terms of A,, we introduce 
the characteristic length ratio 

1 1 S l .  

Figure 6 and equation (8) show that Iw,I becomes infinite as M, -+ 1. Therefore, 
the characteristic ratio is becomes infinite as the shock wave becomes a sound 
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FIGURE 7. Variation of bounded teniperature derivative (11P (u/T)  d T / d u ) ,  and bounded 
heat-flux ratio (M'+~o/q), with singular point Mach number M ,  in composite solution: 
-, (M-2 ( u p )  dT/du) , ;  - - - , (iM2qO/q),; ***..., (M2qO/p), for Fourier relation. 

wave, as we know it should. Equation (56) also allows one to interpret Iw,I as 
a non-dimensional length scale; and this is extremely interesting in view of the 
prominent role played by w, in (7) and (16). In  fact, the similarity between (16) and 
Wang Chang & Uhlenbeck's equation ( 2 5 )  extends even further than mentioned 
above. I n  our problem, Jw,I scales the wings of the shock wave, while in their 
problem the corresponding variable, 9?( go) ,  determines the wavelength of the 
sound wave. 

Since p is proportional to T for Maxwell molecules, (55 )  yields the length- 
scale ratio 

IWlI = (u2/%)21w2/@1/. (57) 

The calculated results summarized in figure 6 show that the value of iwz/wll 
approaches 20 (approximately) as Ml becomes large. Therefore, the ratio lies in 
the range 

and one concludes that the shock-wave profile is essentially symmetric with 
respect to the wings. This conclusion is consistent with the profiles observed in 
recent experimental work (Schmidt 1969), and obtained from a direct-simulation 
Monte Carlo method for the solution of the Boltzmann equation (Bird 1970). 

I n  contrast to figure 6, the crossing of the axis by the two curves a t  point 
C in figure 7 is not an artifact of the solution; it is a real effect, and it develops a t  
a shock Mach number of .ill, 2 1.55, which corresponds to a relatively weak 
shock wave. The figure shows that, for all shock waves of strength MI > 1.55, the 
derivative (dT/du), is positive. Therefore, in the T,u plane (see figure 1), there 

1 < p 2 / 4 1  5 4; 
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are points in the flow where the temperature is greater than the Rankine- 
Hngoniot value T, (i.e. a temperature overshoot exists in the shock wave). We 
feel the present solution gives a definitive proof that a temperature overshoot 
exists in strong shock waves; but we cannot determine whether the overshoot 
encompasses a large portion of the profile, or whether it is a phenomenon that is 
restricted to the immediate vicinity of the downstream singular point (see 
figure 1). The tota.1 evidence may point to the latter, because figure 7 shows 
that the value of the slope (dTldu,) is quite significant, while Monte Carlo 
calculations by Hicks & Yen (1969) and by Bird (1970) show essentially no 
evidence of overshoot over most of the interior of a shock wave (their work covers 
a variety of molecular models). 

The existence of a temperature overshoot explains why convergence a t  the 
subsonic end of the shock wave is so unexpectedly difficult for both the Grad 
solution and our modified solution. The answer, of course, lies in the fact that 
neither representation forf (i.e. neither (38) nor (48)) can generate, in just a few 
terms, the degree of asymmetry needed to represent temperature overshoot. We 
now understand that use of (48) allowed accelerated convergence a t  the super- 
sonic side, because the bimodal distribution function of Mott-Smith is a good 
representation for the molecular-beam-like nature of the upstream flow. How- 
ever, a further modification to the first guess for f in (48) would be needed to 
accommodate temperature overshoot and thus accelerate convergence at the 
subsonic side. 

The second quantity in figure 7 is shown in a form inverted with respect to 
our normal manner of listing bounded variables. The reason this was done is 
that the Fourier heat flux, 

changes sign with the onset of temperature overshoot, and the inverted form 
gives the simplest curve. The relation used to compute the heat-flux ratio is 

q0 - k(dT/dx) ,  

Here again in figure 7, we see a wide departure from the Navier-Stokes relation 
q = 40, except for the points near M, = 1. For a strong shock wave, the figure 
shows that q N N2,q0 a t  the supersonic singular point (which implies that dT[dx 
approaches zero faster than q), and q - 2qOat the subsonic singular point. Here, 
there is a complete breakdown in the association between q and qo: the Fourier 
expression qo loses its physical significance. Viscous stress T and heat flux q are 
physical quantities for all degrees of kinetic non-equilibrium; but this is not 
necessarily the case for the so-called kinetic temperature T. This is why figures 
6 and 7 show that T and q have physically correct signs and understandable func- 
tional forms, while it is only T that behaves in a rather peculiar manner. 

The improvement achieved by our representation (48) over Grad's representa- 
tion (38) indicates that our closure relations are superior to his, since the moment 
equations used are identical. It is also true that our closure relations are more 
complicated than his, and this is unfortunate in the following sense: one of the 
most intriguing aspects of this work is the opportunity it affords one to examine 
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FIGURE 8. Variation of moment ratios (Rlll/Rl)s and (R,,,,,/B,), with momeiit ratio 

(h’lll/Sl)8: -, (Rlll/Rl)~ from composite solution; - - - - , (Blll/Rl)~ from Grad’s fourth- 
order closure relations ; - - - , (Blllll/Bl)8 from composite solution ; . * * - - ,  (R,,,,,/R,), 
from Grad’s fourth-order closure relations. 

n very specific problem, yet learn enough to be able to draw more general con- 
clusions. Specifically, one would like to  develop constitutive relations for several 
of the higher moments off, and in essence, this is exactly the sort of information 
that one obtains from the closure relations. 

Since Grad’s closure relations are simpIer than ours, it is worthwhile to see if 
t,here is anything useful that can be salvaged from them. Taking the fourth- 
order relations as a case in point, we again list (44)-(46), with (45) and (46) re- 
written by means of (21) and (44): 

Comparison of these with (22)-(  24) shows that Grad’s fourth-order closure rela- 
tions are equivalent to the set 
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FIGURE 9. Variation of ratio (R,/qu2), with singular point Mach number M,:  -, compo- 
site solution ; - - - - , Grad’s fourth-order closure relations. 

I n  figure 8 we show (Rlll/Rl)s and (Rlllll/Rl)s as functions of (fYlll/Sl)s, as defined 
by (63) and (64). For comparison, we also display the values obtained from the 
composite solution. The agreement is seen to be surprisingly good, which in- 
dicates that the major problem with Grad’s fourth-order closure relations lies with 

I n  view of this conclusion, we compare in figure 9 the moment ratio (R1/qu2), 
from Grad’s fourth-order closure relation (62) with the value obtained from the 
composite solution. The difference as seenis trivial, yet of the utmost importance. 
Grad’s upstream value approaches zero for2Ml & 1, whereas the more correctvalue 
is 4.07. The existence of a critical Mach number a t  every order in Grad’s solution 
can be shown to arise from the vanishing upstream of such a moment ratio in 
Grad’s closure relations. Figure 9 shows that it would be a trivial step to modify 
the functional form of Grad‘s closure relation (62) to produce a fourth-order set 
that would yield a solution uniformly valid in shock-wave Mach number. Once 
this were done, the obvious next step would be to introduce the same modification 
into Grad’s fourth-order closure relations before they were evaluated a t  the singu- 
lar point s. This would allow the complete computation of shock-wave structure. 
However, in order that the steps be physically meaningful, rather than just a 
mathematical exercise, it would be necessary to ensure that the modification 
left (62) invariant to a Galilean transformation. This possibility of formulating 
closure relations beyond the Navier-Stokes level is extremely exciting, and has 
provided much of the justification and direction for the present work. 

(62). 
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